
Chapter 5

Domain Modeling Language

At least since the introduction of the Chen Entity-Relationship Model [Chen, 1976], well
before object-oriented programming became mainstream, relations are an integral part
of domain modeling languages. Therefore, we would expect that recent programming
languages should have constructs to facilitate the implementation of relations. In fact,
about twenty years ago, Rumbaugh argued convincingly for the inclusion of relations as
a primitive declarative construct in object-oriented programming languages:

Object-oriented languages express classification (the grouping of objects into classes)
and generalization (the refinement of classes into subclasses) well, but do not con-
tain syntax or semantics to express relations directly. Any program can implement
particular relations on an ad hoc basis, but the abstraction may get lost in the imple-
mentation mechanisms.
[...]
Object-oriented languages have built-in constructs for generalization because it is
a natural concept that people use in ordinary discourse; it allows algorithms to be
written more concisely and more clearly; and it is common enough to justify building
it into a language. Relations are also natural, productive, and common in abstract-
ing applications. An object-oriented language is more expressive if relations are a
primitive declarative construct, on the same footing as classes.

[Rumbaugh, 1987]

And yet, surprisingly, none of the more recently developed object-oriented program-
ming languages provide such a construct. Unfortunately, the consequence of this over-
sight in the design of new programming languages is an undesirable burden for the
programmers that need to implement domain models, as we have seen in Section 3.3.

Thus, given the current state of the object-oriented programming languages, a possible
approach to simplify the implementation of domain models is to extend those languages
with a set of new constructs for implementing relations. This solution, however, has the
inconvenient that interferes with the development tools that programmers use and goes,



100 Domain Modeling Language

therefore, against the guiding-principles that I established in Section 1.2.2.

The approach that I propose in this chapter follows a different route. Rather than
extending a programming language, I propose a new language—the Domain Modeling
Language (DML)—that complements and integrates with the Java programming language.
The DML language is a micro-language designed specifically to implement the structure
of a domain model: It has constructs for specifying both entity types and associations
between entity types. Associations are the primitive declarative construct for relations
that was argued for by Rumbaugh [1987].

I start with the rationale underlying the development of this new language, and then
I describe the language in detail, showing both its syntax and how it integrates with the
Java language. I discuss related work at the end of the chapter, in Section 5.8.

5.1 DML’s Rationale

The objects of a domain model have special needs, compared to the remaining objects of
an application, as we have discussed already in Section 2.1.4 and Section 2.1.5. These
special needs may include, for example, that they are stored in a database whenever they
change, or that they be accessed by multiple concurrent threads in a consistent way.
Most often, because of these needs, the classes that represent the domain objects must
follow some coding conventions, to ensure that their instances behave as expected. For
instance, if we are using the JVSTM described in Section 4.4 to make the domain objects
transactional, we must use instances of the class VBox for all the mutable fields of a
domain class.

In some cases, as when using the JVSTM, the code conventions are simple to follow.
But, as simple as they may be, they still must be applied manually by the programmers,
introducing unnecessary effort into the programming task, and opening the possibility of
errors. Thus, the idea of automating these programming tasks was the first incentive that
led me to the development of the DML: I wanted a simple way to specify that a class is
a domain class, and to have this class transformed automatically into a class that uses
versioned boxes for all its fields.

Nevertheless, this reason alone is not sufficient to justify the need of a new language.
In fact, transforming each of a class’s field into a field of another type and changing the
code that accesses that field to use a different access expression, is well within the reaches
of Java’s annotations and post-processing technologies.

The most important reason for the development of the DML language, however, was the
lack of support in Java for the implementation of associations between classes. To solve
this problem in a convenient way, I would need to extend the syntax of the Java language



5.1 DML’s Rationale 101

with new top-level syntactic constructs to represent associations. Unfortunately, the
extension mechanisms available in Java do not allow syntax extensions. The top-level
constructs of a Java program are the class and the interface, and no provisions exist to
create other syntactic constructs. So, I decided to create a new language—the DML—with
the appropriate constructs to represent both the classes and the associations of a domain
model.

Yet, it is not the goal of DML to replace Java. Rather, it should integrate with Java,
so that programmers can still leverage on all the advantages of the Java programming
language. The key idea is that this new language should be as small as possible, by
providing constructs to represent a domain model’s structure, but leave all the rest to
Java. In particular, the behavior of the domain model’s classes should be programmed in
Java, as before. Furthermore, the code that implements the classes’ behavior should be
the same, regardless of how the class structure is developed (either with DML or in plain
Java).

Therefore, DML is designed to represent only the structural aspects of a domain model,
using, for that, constructs that are as close as possible to the constructs used at the mod-
eling level—constructs such as class and association. But also, because the domain model
is not complete without its behavior, which is programmed in Java, the model’s struc-
ture expressed in DML must integrate with the Java code that implements the model’s
behavior. Both the syntax and the semantics of DML reflect this requirement of seamless
integration.

As the DML is designed to target specifically Java programmers, its syntax borrows
from the syntax of Java whenever possible. Moreover, the semantics of DML is specified
by describing the set of Java classes that result from a DML domain specification: To
implement the domain model’s behavior, programmers must know the interfaces of these
resulting classes. Thus, implicit to the semantics of DML is that there is a compilation
process that transforms a DML domain specification into a set of Java classes.

Finally, the last requirement that influences the design of DML is that, even though
programmers must know the interfaces of the classes generated by the DML compiler,
they should not need to know the implementation details of those classes. In fact, to
avoid round-trip problems, the source code of the class generated by the DML compiler
should not be accessible to the programmers: If programmers could modify the code
generated by the DML compiler, the DML compiler would not be able to regenerate the
code when some part of the DML domain specification changes.

In Figure 5.1, I illustrate the expected effect of using the DML in the tool chain typically
used for the development of Java applications. The DML compiler is the only element
that is new. It reads a set of DML source files, which specify the structure of a domain
model, and generates a set of Java source files that implement the structure of that



102 Domain Modeling Language

Java Source Java Classes

DML Source Domain Classes’
Sources

Java Source Java Classes

Standard Java Tools

DML compiler

Standard Java Tools

May be used by IDEs

Figure 5.1: The effect that the DML has on the tool chain typically used for Java
application development. The dashed line separates the two different scenarios of
tool chain usage. The scenario above the line corresponds to the situation where the
DML is not used. The scenario below the line illustrates the changes caused in the
tool chain by using the DML. Rectangles represent implementation artifacts of the
development process. The rectangles with a white background represent the artifacts
that are edited by the programmers, whereas the rectangles with a gray background
are tool-generated artifacts that the programmers never modify manually. The large
arrows represent the transformation of one kind of artifacts into another kind of
artifacts, performed by the execution of the development tools indicated inside the
arrow. Finally, the single arrow pointing from the Domain Classes’ Sources to the Java
Source indicates that the former artifacts may be used by IDEs to help programmers
in the development of the latter.

domain model. I decided to generate Java source code, rather than compiled classes, to
eliminate dependencies between this transformation process and other Java classes. As
we shall see, the Java source code generated by the DML compiler may need additional
application-specific classes to compile. Yet, the DML compiler itself does not need any
other application-specific Java class to perform the transformation. So, by generating
only source code, the DML compiler may be executed at any time during the development
process.

5.2 Grammar Notation and Lexical Structure

The syntax of the DML language is defined using a context-free grammar that I introduce
in the following sections. To present this grammar, I use the notation that is used in the
Java Language Specification [Gosling et al., 2005, Chapter 2]:

• Nonterminal symbols are shown in italic type, with no spaces between words and
with the first letter of each word capitalized. For example, the following are nonter-



5.2 Grammar Notation and Lexical Structure 103

minal symbols: Identifier, DomainSpecification, and EntityTypeDeclaration.

• Terminal symbols are shown in fixed width font. Examples of terminal symbols
are: class, }, ;, and playsRole.

• Production rules are typeset with the left-hand side nonterminal—the nonterminal
symbol defined by the rule—followed by a colon, on a line by itself. Then, on each
of the following lines, there is a sequence of symbols that defines an alternative
right-hand side of the rule. Thus, the rule

QualifiedName:

Identifier

QualifiedName . Identifier

defines the nonterminal QualifiedName as either an Identifier, or a QualifiedName,
followed by the terminal . and an Identifier. This rule is part of the syntactic
grammar for the DML language and defines the nonterminal QualifiedName as a
sequence of one or more identifiers (explained below) separated by dots.

• The suffix opt, which may appear on the right-hand side of a rule, indicates that the
symbol that precedes the suffix is optional—that is, that in fact the right-hand side
corresponds to two alternative right-hand sides, one where the symbol occurs and
another where the symbol does not occur.

A lexical grammar for the Java programming language is given in Chapter 3 of the
Java Language Specification [Gosling et al., 2005]. This grammar defines how sequences
of Unicode characters are translated into a sequence of input elements, which may be
white space, comments, or tokens. The tokens, which consist of identifiers, keywords,

literals, separators, and operators, form the terminal symbols for the syntactic grammar
of Java.

The DML is a much simpler language. For instance, in DML there are no literals nor
operators. DML uses only identifiers, a few keywords, and operators. Yet, because DML
must integrate seamlessly with Java, I use the lexical grammar defined for Java to define
the lexical structure for the DML language. Thus, the syntax of DML for such things as
comments, identifiers, and white space is the same as in Java.

Note that, even though the DML language does not use most of the keywords of Java
nor any literals, the identifiers used in a DML specification must follow the restriction that
they cannot be a keyword, a boolean literal, or the null literal, because these identifiers
will appear as identifiers in the Java source code generated by the DML compiler.

In the grammar of DML presented in the following sections I use the nonterminal
symbol Identifier as it is defined in the Java lexical grammar: Informally, as a sequence



104 Domain Modeling Language

DomainSpecification:
DomainDeclarationsopt

DomainDeclarations:
DomainDeclaration
DomainDeclarations DomainDeclaration

DomainDeclaration:
ValueTypeDeclaration
EntityTypeDeclaration
AssociationDeclaration

Listing 5.1: Syntactic rules for a domain specification. DomainSpecification is the
goal symbol for the DML syntactic grammar.

of Unicode characters that start with a letter, and is followed by any number of letters
or digits. Furthermore, I use the nonterminal symbol DecimalNumeral as it is defined in
the Java lexical grammar, also: Either as the digit 0, or as a sequence of digits starting
with a digit from 1 to 9. Finally, I use the nonterminal QualifiedName as defined by the
production given above. All the remaining nonterminal symbols are defined in one of the
grammar fragments shown in the following sections.

5.3 Domain Specification

The DML language allows us to represent only the structural aspects of a domain model. It
has no constructs to describe the behavior of a program. So, what the DML compiler reads
and processes should not be called a program. Rather, I call it a domain specification.

The syntax of a domain specification is defined by the grammar rules shown in List-
ing 5.1. The nonterminal symbol DomainSpecification is the goal symbol of the DML
syntactic grammar.

According to these rules, a domain specification is a sequence of zero or more domain
declarations, which, in turn, are either a value type declaration, an entity type declaration,
or an association declaration. The following sections describe, in detail, the syntax and
the semantics of each of these domain declarations.

Each domain declaration introduces a new name that may be used in other parts of the
domain specification to refer to the domain element introduced by this declaration. Thus,
the only restriction to the order of domain declarations is that the names are introduced
before they are used.



5.4 Value Types 105

ValueTypeDeclaration:
valueType ValueTypeName AliasClauseopt ;

AliasClause:
as ValueTypeName

ValueTypeName:
QualifiedName

Listing 5.2: Grammar rules for the syntax of a value type declaration.

5.4 Value Types

In the DML language, I distinguish between value objects and entities, as described
in Section 2.2.3. Value objects, unlike entities, are immutable, are not persistent by
themselves (only as part of entities), and do not participate in bidirectional associations.
Therefore, the code used to implement a value type is significantly different from the code
used to implement an entity type.

Furthermore, often the value types used in a domain model are not specific of that
domain model. Instead, they may be used across many different domains. So, in many
cases value types are provided already by a third-party framework or toolkit. If, however, a
value type does not exist yet, the implementation of its structure is mostly trivial, because
value objects are immutable.

For these reasons, the DML language does not allow the specification of new value
types. Yet, value types are needed to define new entity types: All the attributes of an
entity type must be of some value type. That is why the DML language has value type
declarations.

New value types are introduced in a domain specification by value type declarations,
which follow the syntax specified by the grammar productions shown in Listing 5.2.

Each value type declaration introduces into the domain specification the name of a
value type. The definition of this value type, however, is made outside the DML’s domain
specification.

In its simplest form, a value type declaration is only the keyword valueType followed
by the fully-qualified name of a new value type. That name becomes a new valid name
that may be used wherever a value type is expected. When the alias clause is used, the
name that is introduced into the domain specification as a new value type is the name
that follows the keyword as; the real name of the value type is used only by the DML
compiler to generate the code with the appropriate types.



106 Domain Modeling Language

valueType boolean;
valueType byte;
valueType char;
valueType short;
valueType int;
valueType float;
valueType long;
valueType double;
valueType java.lang.Boolean as Boolean;
valueType java.lang.Byte as Byte;
valueType java.lang.Character as Character;
valueType java.lang.Short as Short;
valueType java.lang.Integer as Integer;
valueType java.lang.Float as Float;
valueType java.lang.Long as Long;
valueType java.lang.Double as Double;
valueType java.lang.Number as Number;
valueType java.lang.String as String;

Listing 5.3: Default value types in the DML language. The first eight value type dec-
larations introduce the names of the eight primitive types in Java as value types. The
following eight declarations introduce the wrapper reference types, which, because of
the alias clause, should be used without the java.lang package qualifier. Likewise
for the last declaration, which introduces the name String.

As an example, I show in Listing 5.3 the value type declarations for the value types
defined by default in the DML language.

5.5 Entity Types

Entity types are the basic elements of a domain specification. Each entity type describes
the structure of a set of similar entities, which are the objects that represent the domain’s
state. Entities hold their state in a set of attributes, which may change during the
execution of an application as the state of an entity changes. The value of each attribute,
however, must be a value object—that is, the type of each attribute must be a value type.
Entities may refer to other entities only through the traversal of the associations between
their types.

5.5.1 Syntax of Entity Type Declarations

A new entity type is introduced in a domain specification by an entity type declaration,
which follows the syntax specified by the grammar rules shown in Listing 5.4 on the next
page.



5.5 Entity Types 107

EntityTypeDeclaration:
class EntityTypeName Superopt EntityTypeBody

EntityTypeName:
QualifiedName

Super:
extends EntityTypeName

EntityTypeBody:
;
{ AttributeDeclarationsopt }

AttributeDeclarations:
AttributeDeclaration
AttributeDeclarations AttributeDeclaration

AttributeDeclaration:
ValueTypeName Identifier ;

Listing 5.4: Grammar rules for the syntax of an entity type declaration.

An entity type declaration is a stripped-down version of a class declaration in the
Java programming language. In fact, many entity type declarations in DML are valid
class declarations in Java, even though only a few class declarations in Java are valid
entity type declarations in DML.

As in Java, after the keyword class comes the name of the new entity type. But,
whereas in Java the name of the new class must be an Identifier, in DML the EntityType-

Name may be a qualified name.

When the new entity type is a subtype of another entity type, we represent that in-
heritance relationship by using the keyword extends followed by the name of the entity
type of which the new type is a subtype. Note that the name after the keyword extends

must be the name of an entity type introduced by a previous entity type declaration. In
DML, an entity type cannot be a subtype of a value type.

The body of an entity type declaration is used in DML only to specify the entity type’s
attributes, using a syntax similar to the syntax of field declarations in Java. If an entity
type does not have new attributes (other than those inherited), the body of its declaration
may be replaced by a semicolon. An example of such a simple entity type declaration is

class Bank;

Yet, in general, entity types have one or more attributes. So, typical examples of entity
type declarations are shown in Listing 5.5 on the following page.



108 Domain Modeling Language

class Client {
String name;

}

valueType a.business.api.Money as Money;

class Account {
Money balance;

}

class ClientAccount extends Account {
boolean closed;

}

Listing 5.5: Examples of entity type declarations in DML. Both Client and
Account are top-level entity types that do not inherit from any other type. The
ClientAccount type, however, is a subtype of Account. Also, the Account entity
type uses a value type introduced in the previous declaration.

5.5.2 Semantics of Entity Type Declarations

I specify the semantics of a domain specification by prescribing the minimal set of Java
classes that a compiler of the DML language must produce when it compiles the domain
specification. Also, I prescribe which fields and methods each generated class must have.
Different compilers for the DML language may vary in the classes they produce. Yet, all the
compilers must conform to the minimal interface specified here, because programmers
depend on this interface to develop the rest of the domain model.

Therefore, in this section, I specify the semantics of an entity type declaration by
describing the minimal Java interface that a DML compiler must produce when it compiles
an entity type declaration.

We have seen in Section 3.3.1 that classes from a UML class diagram are implemented
naturally as classes in Java: Typically, each class of a class diagram—corresponding to
an entity type in DML—is implemented by a single class in Java.

In DML, however, an entity type is implemented by two classes, as depicted in Fig-
ure 5.2 on the next page. Each class implements one of the two aspects of a domain
entity:

• The first class—the state class—is abstract and implements the domain entity’s
structural aspects. The DML compiler generates this class from the domain speci-
fication. Thus, programmers should not edit this class manually.

• The second class—the behavior class—extends the state class and implements the
domain entity’s behavioral aspects. This class, unlike the state class, cannot be



5.5 Entity Types 109

class A {
ValueType1 attr1;
...
ValueTypeN attrN;

}

A

getAttr1(): ValueType1
setAttr1(ValueType1 val)
...
getAttrN(): ValueTypeN
setAttrN(ValueTypeN val)

AState

DML Compiler

Figure 5.2: The result of compiling an entity type in DML. An entity type A is trans-
formed into two Java classes AState and A. The abstract class AState has a getter
and a setter for each of the entity type’s attributes. The gray background in the
class AState indicates that the DML compiler generates this class and, thus, that
programmers should not edit the class.

generated by the DML compiler, because the domain specification does not have
any behavior specification.1 Instead, the implementation of this class is the respon-
sibility of the domain model programmers: This is the class where programmers
implement the behavior of the entity.

The DML compiler uses this compilation strategy of separating a class in two to avoid
round-trip problems: Whenever we change the domain specification, we must reexecute
the DML compiler to update the classes generated in previous compilations, but, because
programmers do not edit the state classes, the DML compiler may regenerate those classes
from scratch each time it runs.

The state class that the DML compiler generates from an entity type has both a getter
method and a setter method for each of the entity type’s attributes. The DML compiler
forms the names of these methods by concatenating the prefixes get and set, respec-
tively, with the name of the attribute, after capitalizing the first letter of the attribute. So,
given an entity object obj, the method call obj.getAttrName() returns the obj’s value
for the attribute named attrName, whereas the call obj.setAttrName(newVal) sets
the value of the attribute to the value newVal. No other methods can access the attribute.

Even though a state class has all the attributes of an entity type and no abstract
method, it must be abstract, because it does not represent an entity. An entity con-
tains both state and behavior, but the instances of a state class contain only the state.
Therefore, the state class is abstract to prevent the creation of instances of an incomplete
type.

1In fact, the DML compiler generates an empty behavior class if the class does not exist yet, so that we may
compile the domain model without errors. If the class exists, however, the DML compiler does not modify it.



110 Domain Modeling Language

class A {
...

}

class B extends A {
...

}

B

...

BState

A

...

AState

DML Compiler

Figure 5.3: The result of compiling an hierarchy of entity types in DML. The Java
state class that results from the compilation of an entity type extends the behavior
class that corresponds to its supertype: In this case, the class BState extends A.

The class that represents both the state and the behavior of an entity is the behavior
class, which implements the behavior and inherits the state from the state class. Note
that the methods in the behavior class may access the state of an instance by using the
getter and the setter methods inherited from the state class.

As a matter of fact, the state class is meant to be used only as the superclass of
its corresponding behavior class. No other classes should extend it. Also, no fields or
methods or any other part of the code should refer to a state class as a type. Instead,
all the remaining code should use the types that correspond to behavior classes. For
instance, in Figure 5.3, I show that, if B is a subtype of A, the class that implements the
structure of B, the class BState, must extend the class A, rather than the class AState.
If the class BState extended the class AState instead of A, it would not inherit the
behavior of A, as expected.

Finally, there is only one restriction regarding the implementation of a behavior class—
that it should not have any state of the entity type; the state belongs in the state class.
Besides that restriction, programmers are free to implement the behavior class in whatever
way they want. For instance, programmers may make the class abstract, if it is not meant
to have any instances; they may make the class implement any number of interfaces; or
they may add the methods they need to implement the entity’s behavior. In particular,
they may override any of the methods that are specified in this section, which the behavior
class inherits from the state class.



5.6 Associations 111

5.6 Associations

In UML, relations are called associations and they may connect two or more classes to
represent a relationship that exists among the objects that the connected classes describe.
The DML language uses the name association, also, to represent relationships. But,
unlike UML, DML does not allow the specification of associations with an arbitrary arity;
in DML all associations must be binary. I chose to support only binary associations in
the DML language mostly for pragmatical reasons.

First, because even though the semantics of a generic n-ary relation is naturally
defined in mathematical terms as a set of tuples, the semantics of n-ary relationships as
a domain modeling construct is either ill-defined, or confusing and error-prone [Génova,
Llorens, and Martínez, 2002].

Second, because the implementation of n-ary associations in the object-oriented pro-
gramming paradigm is not that simple. In an object-oriented program, programmers use
binary associations to navigate in the object graph, going from one object to another by
traversing a link—that is, an instance of an association—between the two objects. Typi-
cally, programmers implement such binary links in an object-oriented domain model as
references or pointers from one object to the other. When the association is not binary,
however, to find the object at the other end of a link, we need more than an object:
We need all the objects in the link but one. Thus, we no longer can use simple refer-
ences between objects to implement such associations. But this is more of a concern
for the implementation of the DML compiler, which would need to generate the code to
implement the correct semantics (provided that we could agree on one). If we ignore the
implementation problems raised by non-binary associations, however, there are still us-
age problems: Traversing a binary link in a typical implementation of an object-oriented
domain model may be linguistically quite different from traversing links that relate more
than two objects.

The third pragmatical reason for limiting the DML to binary associations, was the
observation that associations among three or more entity types are seldom used in the
design or in the implementation of a domain model: Most probably because of the two
reasons above, programmers shy away from n-ary associations when they develop their
domain models.

The fourth and final reason is that limiting the DML to binary associations does not
prevent the implementation of a domain model. In the rare cases where programmers use
a non-binary association, it is possible to replace that association (often with benefits to
the design of the domain model) with an entity type and several binary associations: The
new entity type represents, as first-class entities in the domain model, the links of the
non-binary association that it replaces.



112 Domain Modeling Language

Therefore, following the fourth guiding-principle of Section 1.2.2, I considered that the
eventual benefits of supporting n-ary associations in DML were not worthy of the effort
necessary to implement them.

5.6.1 Syntax of Association Declarations

An association declaration, which adds an association to a domain specification, is a top-
level construct in the DML language—that is, it is a construct that stands by itself, rather
than being part of, or having to appear subordinated to another construct.

This syntax for associations contrasts with how other approaches to the problem of
making associations explicit in the programming language propose to represent associa-
tions. Many of such approaches propose to represent associations with new constructs
that programmers should use in each of the associated classes. This solution, however,
splits the information about the association between the two classes, making both the
understanding and the maintenance of a domain model more difficult. Thus, I argue that
an association declaration should be a single construct, as it is in the DML language.
In Listing 5.6 on the next page, I show the grammar rules that specify the syntax of an
association declaration. This set of rules concludes the syntactic grammar of the DML
language.

The keyword association introduces an association declaration and is followed by
the name of the association, an identifier. As we shall see in the following section, the DML
compiler uses this identifier to name a static field in each of the classes that participate
in the association. Therefore, this name must be unique throughout the inheritance
hierarchy of each of those classes. To avoid name clashes, programmers should adopt a
naming convention that distinguishes the names of associations from the names of other
members of a class (e.g., inner classes).

In a relationship among several entities, each of the entities plays a role in the rela-
tionship. Thus, the DML language uses role declarations to identify the entity types that
participate in an association. As in DML all the associations are binary, an association
declaration has exactly two role declarations.

Each role declaration specifies the type of the entities that play the declared role in
the association, the name of the role, and the multiplicity of the role. Yet, both the name
and the multiplicity of the role are optional. If the name of a role is not specified, then
the association is not traversable in that direction—that is, it is not possible to reach
the entities that play that role from the entities in the other end of the association. I
shall discuss this further in the following section, where I present the semantics of an
association declaration.

If the multiplicity of a role is not specified, however, a default multiplicity of 0..1



5.6 Associations 113

AssociationDeclaration:
association Identifier RoleDeclarations

RoleDeclarations:
{ RoleDeclaration RoleDeclaration }

RoleDeclaration:
EntityTypeName playsRole Identifieropt RoleBody

RoleBody:
;
{ MultiplicityOption }

MultiplicityOption:
multiplicity MultiplicityValues ;

MultiplicityValues:
MultiplicityRange
MultiplicityValues , MultiplicityRange

MultiplicityRange:
MultiplicityUpperBound
MultiplicityLowerBound .. MultiplicityUpperBound

MultiplicityUpperBound:

*
DecimalNumeral

MultiplicityLowerBound:
DecimalNumeral

Listing 5.6: Grammar rules for the syntax of an association declaration. Each
association declaration has exactly two role declarations, identifying the two entity
types that participate in the relationship. The nonterminal symbol DecimalNumeral
is defined in the Java lexical grammar [Gosling et al., 2005] either as the digit 0 or as
a sequence of digits that start with a non-zero digit.



114 Domain Modeling Language

association AccountOwnership {
Client playsRole owner {
multiplicity 1; // it is equivalent to 1..1

}

ClientAccount playsRole account {
multiplicity 1..*;

}
}

association AccountGroup {
CheckingAccount playsRole checking {
multiplicity 1;

}

SavingsAccount playsRole savings {
multiplicity *; // it is equivalent to 0..*

}
}

Listing 5.7: Examples of association declarations in DML. Both associations are bidi-
rectional one-to-many associations. Note that the role names and the multiplicities
match those specified in the class diagram shown in Figure 2.4 on page 24.

is assumed. Moreover, the multiplicity range * is a shorthand for 0..*. Finally, a
multiplicity range of the form N, for any positive integer N , is a shorthand for N..N.
Thus, every role has a multiplicity value, either implicitly or explicitly declared, which is
a sequence of one or more ranges with a lower bound and an upper bound.

Note that the syntax for an association declaration could be made simpler. For in-
stance, we could eliminate the keywords playsRole and multiplicity, as well as
some of the curly braces. The reason for having this syntax, however, is that I designed
it with extensibility in mind. For example, I foresee the need to add other options to a
role declaration. Yet, given the current syntax for the multiplicity option, the syntactic
changes to add other options would be minimal.

To conclude this section I show, in Listing 5.7, two association declarations that
represent two of the associations from the banking domain.

5.6.2 Semantics of Association Declarations

Like before, when I specified the semantics of an entity type declaration, I specify the
semantics of an association declaration by prescribing the minimal Java interface that a
DML compiler must generate for each association declaration.

In this case, however, the DML compiler does not need to generate any new classes to



5.6 Associations 115

implement an association declaration. Rather, it must generate new methods for each of
the entity types that play a role in the association.

The semantics that I specify here tries to respect the pragmatics of object-oriented
programming. Object-oriented programmers do not, as a common practice, implement
a binary association or the association’s instances—the links—as first-class objects in
the program. Instead, the object-oriented common practice is to implement a binary
association between two classes A and B, by adding to each of the classes A and B a
reference to the elements of the class in the other side of the association: In the class
A we add a reference to elements of B; in the class B we add a reference to elements of
A. These references, however, are not typically accessible by the classes’ clients. As we
have seen in Section 3.3.2, the usual approach is to provide methods that access these
references.

Thus, because programmers should use the public methods, rather than the private
references, the semantics that I specify here prescribes only which methods must a DML
compiler generate. It does not specify how the compiler should implement those methods.
It does not specify either, how the generated code should implement the association’s
links, whether with references in each of the classes, or with any other solution.

To simplify the presentation below, given an association declaration with two role
declarations, I use the term opposite type of a role declaration to refer to the entity type
of the other role declaration. For example, given the following association declaration

association Rel {
A playsRole role1;
B playsRole role2;

}

I say that the opposite type of the first role declaration is B, and that the opposite type of
the second role declaration is A.

A compiler for the DML language must generate at most two sets of related methods for
an association declaration—one set of methods for each of the role declarations that have
a role name specified. If a role declaration has no name, then the DML compiler should
not generate any methods for that role declaration. The methods generated from a role
declaration belong to the opposite type of that role declaration. They allow the traversal
from an instance of the opposite type to one or more instances of the role declaration’s
type.

Therefore, an association where both role declarations have a name is a bidirectional
association, whereas if only one role declaration has a name, the association is unidi-
rectional. An association declaration where none of the role declaration have a name is
meaningless for a domain specification, because no code will be generated from it.



116 Domain Modeling Language

The signature of the methods that a DML compiler must generate for a role declaration
depends only on the properties of that role declaration:

• The role’s multiplicity determines the set of methods to generate. Although the
multiplicity option may have many different values, the DML compiler separates the
roles into two disjoint classes: (1) the roles that have a multiplicity upper-bound of
one; and (2) the roles that have a multiplicity upper-bound greater than one.2 The
multiplicity upper-bound of a role declaration is the maximum of the upper-bounds
of all the multiplicity ranges (there is at least one) in the role declaration. The upper-
bound of a multiplicity range of the form M..N is infinite, if N is the terminal symbol
*, and the value of the integer N, otherwise. I shall present below, separately, the
set of methods that must be generated for each of these cases.

• The role’s name determines the exact name of each method. The name of the role
with the first letter capitalized appears in all the methods’ names, either with a
prefix only, or with both a prefix and a suffix. Below, when I present the methods to
generate, I show in italic the part of the name of each method that must be replaced
by the role’s name.

• The role’s type determines the type of the argument, or the return type of some of
the methods to generate.

Regardless of the multiplicities involved, the methods that implement an association
must allow us to do each one of the following tasks: (1) create a new link between two
objects, (2) remove an existing link between two objects, and (3) traverse from one object
in one end of a link to the object on the other end. The specific signature of the methods
that allow us to do this, however, depends on the multiplicity of each role. I shall present
each case separately.

5.6.2.1 Roles with a multiplicity upper-bound of one

If the multiplicity of a role declaration has an upper-bound of one, then an object of the
opposite type may refer to at most one object of the role’s type. This is the simplest case
of an association, which is typically implemented with a getter and a setter method.

In Figure 5.4 on the next page, I show the signature of the methods that a DML
compiler must generate for a role declaration with a multiplicity upper-bound of one. Only
the first two methods, shown in boldface, are necessary to implement the association. The
other two methods may be trivially implemented by using the mandatory methods. Yet,
they make the class more convenient to use, and, therefore, more programmer-friendly.

2Roles with a multiplicity upper-bound lesser than one do not make sense.



5.6 Associations 117

association RelAB {
A playsRole role {

multiplicity 0..1;
}

B playsRole;
}

...
setRole(A role)
getRole():A
hasRole():boolean
removeRole()

BState

DML Compiler

Figure 5.4: Methods that a DML compiler must generate for a role declaration with
a multiplicity upper-bound of one. The part of a method’s name that depends on the
name of the role is shown in italic. The methods in boldface are the core methods.
The other methods are optional methods.

The method setRole is the setter method. It allows us to create or to eliminate
a link between an instance of class B and an instance of class A. To create a link, we
should call the method with an instance of class A as argument. In this case, the method
execution creates a new link between the receiver and the argument of the method call.
But, because we can have at most an instance A linked to each instance of B, if there
was already a link between the receiver of the method call and another instance of class
A, the method must eliminate that link before it creates the new link. Finally, the call to
the setter method with a null argument eliminates any current link that may exist for
the receiver of the method call.

The method getRole is the getter method. Given an instance of the class B, b, the
method call b.getRole() returns the instance of the class A that is related to b, if such
an instance exists, or null, otherwise. This method is the method that allows us to
traverse the association.

The method hasRole returns true if there is a link between the receiver of the method
call and an instance of class A. Otherwise, it returns false. Calling this method on an
object obj is equivalent to evaluate the Java expression obj.getRole() != null.
The method, however, may be implemented more efficiently by the DML compiler.

Finally, the method removeRole removes an existing link that may exist for the
receiver of the method call. It is equivalent to call the setter method with a null argument.

5.6.2.2 Roles with a multiplicity upper-bound greater than one

The difference between this case and the previous is that the object of the opposite type
may have multiple links, at the same time, with objects of the role’s type. So, when we
create a new link, we do not remove any existing link, as in the previous case. The existing
links must be removed explicitly, by specifying which object is on the other end of the
link that should be removed. Furthermore, when we traverse the association, we may
reach multiple objects. Thus, the getter method, in this case, must return a collection of



118 Domain Modeling Language

association RelAB {
A playsRole;

B playsRole role {
multiplicity 0..*;

}
}

...
addRole(B role)
removeRole(B role)
getRoleSet():Set<B>
getRoleCount():int
hasAnyRole():boolean
hasRole(B b):boolean

AState

DML Compiler

Figure 5.5: Methods that a DML compiler must generate for a role declaration with
a multiplicity upper-bound greater than one. The part of a method’s name that
depends on the name of the role is shown in italic. The methods in boldface are the
core methods. The other methods are optional methods.

objects.

In Figure 5.5, I show the signature of the methods that a DML compiler must generate
for this case. Like in the previous case, there is a set of core methods, and a set of
convenience methods.

The method addRole creates a new link between the receiver of the method and an
instance of the class B passed as argument to the method. If the argument of the method
is null, the method does nothing.

The method removeRole eliminates the link between the receiver of the method and
the instance of the class B passed as argument to the method. If no such link exists, or
if the argument is null, the method has no effect.

The method getRoleSet returns the set of instances of the class B that have a
link with the receiver of the method. The value returned by this method is always an
instance of a class that implements the java.util.Set interface, but it must satisfy
some conditions that are specified below.

Finally, the remaining three methods may be defined by the expressions to which they
are equivalent:

// the expression
obj.getRoleCount()
// is equivalent to the expression
obj.getRoleSet().size()

// the expression
obj.hasAnyRole()
// is equivalent to the expression
(! obj.getRoleSet().isEmpty())

// the expression



5.6 Associations 119

obj.hasRole(b)
// is equivalent to the expression
obj.getRoleSet().contains(b)

5.6.2.3 Bidirectional associations

When a new link is created for a bidirectional association, that new link must become
traversable in both directions, rather than in only one, regardless of how that link is
created. Likewise for the removal of a link.

A link is an instance of an association between two objects—that is, it represents
that the two objects are related by the relationship that the association represents. A
link, however, is typically implemented as two separate references: Each of the objects
in the link keeps a reference to the other. Yet, when a link is created or eliminated both
references must be updated to reflect the change.

Thus, in a bidirectional association, we should be able to create the same link by
calling either one method for the object in one end of the link, or calling an equivalent
method for the object in the other end. For instance, if we merge the two declarations for
the association RelAB (see Figure 5.4 on page 117 and Figure 5.5 on the facing page), the
execution of the code a.addRole(b) should be equivalent to the execution of the code
b.setRole(a).

As a final example, consider that we have the following association declaration

association Rel {
A playsRole a { multiplicity 0..1; }
B playsRole b { multiplicity 0..1; }

}

Moreover, consider that we have two instances of the class A, a1 and a2, and two in-
stances of the class B, b1 and b2. Between a1 and b1 there is a link, and another
link exists between a2 and b2. Thus, a1.getB() returns b1, b1.getA() returns a1,
a2.getB() returns b2, and b2.getA() returns a2.

Consider now that we execute either a1.setB(b2), or the equivalent b2.setA(a1).
Either of the calls creates a new link between a1 and b2, but, as the multiplicity upper-
bound of both roles is one, the previous links must be eliminated. Thus, after the exe-
cution of either of the calls, we have that a1.getB() returns b2, b1.getA() returns
null, a2.getB() returns null, and b2.getA() returns a1.



120 Domain Modeling Language

5.6.2.4 Sets returned by the method getRoleSet

The specification for the method getRoleSet, presented above, does not specify the ex-
act nature of the value returned by the method—for example, whether the value returned
is an immutable set or a mutable set. Yet, it is important to specify these details, so that
programmers know what they can and cannot do with the result returned.

In the DML language, the value returned by a call to the method getRoleSet is a
mutable set that is backed up by the association and the receiver of the method call.
This means not only that programmers may add and remove elements from the set, but
also that those changes correspond, in fact, to the creation and elimination of association
links. Furthermore, if a new link is added to or removed from the object that backs up
the set, the set reflects that change.

The advantage of having this specification is that we may use all the methods available
in the java.util.Set interface to manipulate the links of an object. For instance, we
may remove all the links of an object, o, with the code o.getRoleSet().clear(). Or,
probably more useful, we may iterate over the set and remove the elements that satisfy
some condition.

Finally, a consequence of this specification is that the method call o1.addRole(o2)
is equivalent to o1.getRoleSet().add(o2). Likewise for the method that removes a
link. Thus, the method getRoleSet is sufficient to implement a role declaration with a
multiplicity upper-bound greater than one.

5.6.2.5 Association objects and their listeners

Having different ways to create and to remove a link makes the domain model more
programmer-friendly, because programmers may choose what is more convenient for
them in each situation. Yet, all these equivalent approaches make the domain model
more complex, and, eventually, more confusing, also. In particular, having various entry
points for the same functionality raises the question of which method should we override
if we want to customize that functionality.

Imagine that we want to execute some code whenever a new link for the association
RelAB is created between an instance of the class A and an instance of the class B.
Should we override the method setRole in the class B? That would work for the links
created by that method. But a link may be created by calling the method addRole in
the class A, also, and we do not know whether that method calls the method setRole

or not. Yet, if we override the method addRole instead, we have similar problems. Even
if we override both methods, we are not sure to catch all the link creations because links
may be created when we add objects to a set returned by the method getRoleSet.



5.6 Associations 121

interface Association<C1,C2> {
void add(C1 o1, C2 o2);
void remove(C1 o1, C2 o2);
Association<C2,C1> getInverse();
void addListener(AssocListener<C1,C2> listener);
void removeListener(AssocListener<C1,C2> listener);

}

interface AssocListener<C1,C2> {
void beforeAdd(Association<C1,C2> assoc, C1 o1, C2 o2);
void afterAdd(Association<C1,C2> assoc, C1 o1, C2 o2);
void beforeRemove(Association<C1,C2> assoc, C1 o1, C2 o2);
void afterRemove(Association<C1,C2> assoc, C1 o1, C2 o2);

}

Listing 5.8: The Java generic interfaces Association and AssocListener. The
DML compiler uses objects of the Association type to implement an association in
Java. Programmers may customize the association operations by adding listeners to
an association object.

To solve this problem, I propose to add yet another way to create and to remove links
from an association: A common point in the code that must be executed whenever a link
is created or removed, regardless of how that is done.

The key idea is to have an object that represents an association. The basic operations
of that object are a method to add a new pair of objects to the association, and a method
to remove a pair of objects from the association. The first method creates a new link, the
second removes an existing link. These methods must be called to create or to remove a
link. In fact, all the methods described previously that create or remove links may call
the add or the remove operations of this new object. The semantics must be the same.

The association object gives us a central point of execution for the operations that
change an association. Now, we need some mechanism to specialize those operations.
Because each association is represented by an object, rather than by a class, we cannot
use standard class inheritance and method overriding to do that specialization. Instead,
we may use listeners to do it. In Listing 5.8, I show both the interface Association

and the interface AssocListener that will allow us to specialize the creation and the
removal of a link.

The method addListener adds a new listener to an association object, whereas
the method removeListener removes a listener. Even though these methods may be
used at runtime to change the set of listeners for an association object dynamically, the
common usage is to add one or more listeners to an association object at class-load-time
and use that set of listeners throughout the entire program.

When an association object has some listeners registered, the methods add and



122 Domain Modeling Language

association Rel {
A playsRole a {

multiplicity 0..1;
}

B playsRole b {
multiplicity 0..*;

}
}

abstract class AState {
static Association<A,B> Rel;
...

}

abstract class BState {
static Association<B,A> Rel;
...

}

DML Compiler

Figure 5.6: Static fields that a DML compiler must generate to hold the
Association objects. The name of the static field in each class is the name of
the association, as given in the association declaration. The association object in
each class is the inverse of the association object in the other class.

remove call the appropriate methods of the registered listeners, following the same or-
der by which the listeners were added to the association object. The method add first
calls the method beforeAdd of each listener, then creates the link, and, finally, calls
the method afterAdd of each listener. Mutatis mutandis for the method remove. Note
that a listener may cancel the creation (or the removal) of a link, if its beforeAdd (or
beforeRemove) method throws an exception.

Using custom association listeners, it is easy to specialize an association. But, before
we can do that, we need to know how to access the objects that represent associations
in a domain model. My proposal is to make them accessible through static fields in the
classes that participate in the association, as depicted in Figure 5.6.

With this final piece in place, we may now specialize the creation of a link, as intended.
In Listing 5.9 on the next page, I show a sketch of the code that we may add to the behavior
class A to accomplish that.

5.7 Implementation of a Domain Specification

The specification of the DML language prescribes in detail the interface of the classes
that a conforming DML compiler must generate; it does not, however, dictate how that
interface should be implemented, even though it gives, now and then, some hints about
possible implementation strategies.

Therefore, different compilers for the DML language may generate different source code
to implement a domain specification: Either because they must generate domain models
with different properties, or simply because they use different implementation strategies.

In fact, the simplicity of the DML language is a conscious design decision to promote
experimentation with different implementation strategies, which may affect significantly


	Introduction
	Domain-Intensive Applications
	Evolution Rather than Revolution: an Engineering Approach
	General Approach
	Guiding Principles

	Thesis Statement
	Notation
	Outline of the Dissertation

	Motivation, Problem Statement, and Approach
	Domain Models in the Software Development Process
	Software Development as the Transformation of Artifacts
	Domain Model: A Central Artifact in the Development Process
	Domain Model at Various Levels: Analysis, Design, Implementation
	Standard Architecture for a Domain-Intensive Application
	The Domain Layer Dependence on the Infrastructural Layer

	Example of an Application in the Banking Domain
	Example's Rationale
	Application's Functionality
	Basic Domain Modeling Terminology
	Initial Design of the Banking Domain Model

	Problem Statement
	Two Approaches to Solve the Problem
	The MDA approach
	This Dissertation's Approach: Reduce the Gap between Languages

	Summary

	The Difficulties of Implementing a Domain Model
	Implementation of a Concurrent Domain Model
	Basic Thread-Safety
	Thread-Safety with More than One Object

	Failure Recovery
	Implementation of the Banking Domain Model's Structure
	Implementation of Classes
	Implementation of Associations

	Implementation of the Banking Domain Model's Behavior
	Implementation of the Basic Deposit and Withdraw Operations
	Implementation of the Client's Total Balance Limit

	Summary

	Versioned Software Transactional Memory
	Introduction to Software Transactional Memory
	Atomic Actions and the Property of Atomicity
	Read Sets, Write Sets, Commits, and Aborts
	Transaction Linearizability

	The Rationale for the Versioned STM
	The Versioned STM Model
	Model Elements and Terminology
	Operations on Versioned Boxes
	The Transactions' Life-Cycle
	The Linearizability of Top-Level Transactions
	Garbage Collection of Old Values
	Examples: The Bank Revisited

	Implementation of the Versioned STM Model
	The JVSTM's API
	Interaction with the Java Memory Model
	Implementation of Versioned Boxes
	Implementation of Transactions
	Atomic Commits
	Speculative Read-Only Transactions
	Implementation of Garbage Collection

	Related Work
	Summary

	Domain Modeling Language
	DML's Rationale
	Grammar Notation and Lexical Structure
	Domain Specification
	Value Types
	Entity Types
	Syntax of Entity Type Declarations
	Semantics of Entity Type Declarations

	Associations
	Syntax of Association Declarations
	Semantics of Association Declarations
	Roles with a multiplicity upper-bound of one
	Roles with a multiplicity upper-bound greater than one
	Bidirectional associations
	Sets returned by the method getRoleSet
	Association objects and their listeners


	Implementation of a Domain Specification
	Using the JVSTM to Make a Transactional Domain
	Implementing Entity Types
	Implementing Associations
	Storing the Association's Links
	Implementing the Role Methods
	Implementing the Association-Aware Set
	Implementing the Association Class
	Implementing Different Role Types
	Enforcing Multiplicity Constraints


	Related Work
	Associations as First-Class Language Constructs
	Patterns for Implementing Associations
	Generating the Code for Associations

	Summary

	Consistency Predicates
	Domain Consistency
	Consistency of Single Objects
	Consistency of Rich Domain Models

	Examples of Constraints
	Consistency Predicates for Atomic Actions
	Consistency Predicates in Java
	Enforcement of Multiplicities with Consistency Predicates
	Implementation of Consistency Predicates in the JVSTM
	Related Work
	Summary

	Validation
	The Fénix Case Study
	Fénix History
	The Original Fénix Software Architecture
	The Use of this Dissertation's Work in the Development of the Fénix System
	Implementation of the Fénix Domain Model with the DML
	Other Benefits of Using the DML
	The JVSTM in the Fénix System

	The Fénix Transactional Workload
	Total Number of Transactions Over Time
	The Read/Write and Write/Conflicts Ratios
	The Dimension of the Transactions


	JVSTM Performance
	Benchmark Running Environment
	Results for the DSTM2 Benchmarks
	Results for the List Benchmark
	Results for the Red-Black Tree Benchmark
	Results for the Skip List Benchmark

	Results for the STMBench7 Benchmark
	The STMBench7 Data Structure
	The STMBench7 Operations
	The STMBench7 Execution Parameters and Results
	Experimental Setup
	Throughput Results
	Latency Results


	Summary

	Conclusions
	Main Contributions
	Future Research

	Bibliography

