
Chapter 2

Using uPortal

Introduction to uPortal
Publishing New Channels
XHTML Design of uPortal
 The Layout
 Making a New Skin
 Cascading Style Sheets
 uPortal Graphics
Layout Fragments
Appendix A: The Default uPortal Cascading Style Sheet
 GUI Format
 Text Format

Note on the images in this document: Usually, the picutres that help someone understand
how a program works will match exactly what that person will see on the screen of their computer. As they
go from one screen to the next, the pictures in the book will move along with them so that they know that
they are in the rigth place. A portal is very customizable in the way it looks and what options are made
available for people using it. By this, each school or business can change the look and feel of their portal so
that it matches their symbols and colors, as well as deciding to remove certain options and buttons. The
pictures that are used in this manual were captured as uPortal was being created. It is almost certain that the
look of the portal that you will be using will not match that of the one used during development. It may
look different, but it will still work in the way described here.

Introduction to uPortal

uPortal is a framework for presenting aggregated content that is
customizable by both the user and the administrators. It is built using a database to
contain the information about each user, with XSL transformations and JAVA to take this
abstract data and convert it into the final, structured layout. This process begins with the
basic user layout. This layout is an XML document, with the USER as the root node.
The data can be stored in a non-XML database, but must be converted into XML before
transformation can continue.

 Sample User Data

*****Add Sample of User Data in XML Form*****

USER

Folder Folder Folder

The User is the Top Level Node

Folder Folder ChannelFolder Channel Channel

Channel Channel

Channel Channel

Channel Channel Channel Channel

Structure the Data

The extracted XML data for the user is applied to a structure XSL style
sheet. This style sheet creates a new XML document that organizes the data into a
framework. This framework may arrange the channels within columns under and list of
tabs, or it may use a vertical tree next to the colums and channels. The advantage of this
step is that the data comes in as generic folders and channels and is then converted into
the desired structure. One of the default style sheets can be made to convert this data into
a tab/column or tree/column strucutre, or additional style sheets can be created to
organize the data to fit whatever final structure is needed.

Apply the Theme and Render the Channels

The XML output from the structure style sheet is transformed through a
second style sheet. This style sheet converts the structure into a final output mark up,
such as XHTML for a web browser or WML for a cell phone, and attaches a “skin,”
which contains any layout graphics, colors and text information. Parallel to this step, the
channels are rendered and both pieces are combined together as the final output.

Picture of structure data having skin added

Separating the structure transform from the theme transform allows for an
added level of variety. New themes can be applied to the same structure, ie an XHTML
or WML version of the layout can be made from either the tab/column or the tree/column
structure. Additionally, any number of skins can be made for each theme.

Publishing New Channels

Publishing a channel is the process of creating a new content channel for
uses to view in their layout. uPortal

HTML Design of uPortal

As described in the introduction, the structure of uPortal is independent of
the imported data. This separation allows for the same information to be used for any
number of output views, including an HTML page, PDA, cell phone, etc. The majority
of uPortal users will be viewing their layout in a web browser. The following sections
discuss how to modify the default look of the uPortal HTML design to match your
institution or company, and to give your users extra options to personalize their view.

Layout

uPortal has been built using the XML family of mark up languages. For this
reason, the HTML output from the theme style sheet is well formed XHTML. More
information on XHTML can be found at the W3C website, or compiled into PDF form at
the im+m eLibrary.

The XHTML uPortal layout consists of four tables, all set to 100% width
and stacked on top of each other. These table separate the content for the Header, the
Tabs, the Channels and the Footer.

 Stylized Rendition of the uPortal XHTML Layout

****Insert Image Similar to Above, with an Actual Page outlining the tables****

Making a New Skin

The skin is the last step in building each page in uPortal, wrapping the
layout with the color scheme and text styles. The user has the ability to change the skin
of their portal in the preferences section. This change will take place instantly, and will
not effect their layout.

New skins can be made and added to uPortal. Creating a new skin requires
the following steps:

1. Making a new Cascading Style Sheet (CSS)
2. Modifying the skin graphics
3. Moving the new files into their appropriate folders and redeploying the

portal

Technically, the CSS does not need to be made before the skin graphics are
created. Since the CSS is used to define the color scheme of the skin, however, it will be
very easy to make the new images after you have used the work on the CSS to define
what the color changes need to be.

Making a new Cascading Style Sheet

uPortal uses a cascading style sheet to control the text fonts and styles, as
well as the background color scheme information. Each skin uses a single style sheet for
all of its styles. The styles defined in the new CSS will be translated into the look of the
uPortal layout when that skin is chosen.

A stylesheet is a list of text and color information that can be viewed and
modified in a word processor:

Fig 2.3.1: A Cascading Style Sheet in Text Format

or in a special program designed to view a CSS file:

Fig 2.3.2: The Same Cascading Style Sheet in WYSIWYG Format

In addition to these two viewing options, the CSS Viewer channel will show the uPortal
CSS in a channel on your layout.

The images below show the more prominent uPortal styles:

Channel Styles

Layout Styles

Preferences Styles

Some other important styles that are not illustrated above:

The entire default, uPortal skin CSS is displayed in Appendix A. Some of
the styles in this CSS appear to be duplicates, such as “uportal-channel-emphasis” and
“uportal-channel-strong.” Other styles may also appear to be unused, such as “uportal-
crumbtrail.” These lesser used styles are included for one of two reasons. In some cases,
they are legacy styles that were used in earlier version of uPortal and have remained for
backwards compatibility. In other cases, extra options have been included for times
when an institution may wish to have styles that are similar, yet still distict. In all cases,
no style is absolutely necessary for the portal to function. If a style is called for by the
portal that is not defined in the CSS, it will be ignored and the browser default will be
used in its stead. Therefore, each designer has the option to define any, all or none of the
styles in the CSS when creating a new skin. It is not recommended to leave any
undefined, however, as it may cause unpredictible behavior when the skin is used by
uPortal.

uportal-channel-code

hover

uportal-input-text uportal-button uportal-channel-table-row-odd

uportal-channel-table-row-even

Modifying the Skin Graphics

All of the graphic elements (Tabs, Channels, Columns and Alert Box) in
uPortal have been designed to expand or contract to exactly fit the size of the content.

 uPortal Tab: Browser Text Size Set to 100%

 uPortal Tab: Browser Text Size Set to 500%

Each element is described in more detail below, along with the graphics it uses:

Tabs: The tabs in uPortal v2.2 actually do not use any graphics at all. They
have been made entirely from table cells with background colors, and transparent gifs
providing the correct spacing.

 uPortal Tab: As Viewed in Browser

 uPortal Tab: Table Spacing Set to 5 and Borders Turned On

The above graphic (Fig 2.x) shows how the tab in Fig 2.x would look with
the table spacing and padding set to 5, and with the borders turned on. Viewing the tabs
in this way shows the design using painted table rows. All of these colors are defined by
the CSS. Therefore, once the CSS has been made, the tabs will instantly updated with the

new colors.
The tabs are being discussed here, in the graphics section, not as a reference

to the tabs, but rather why graphics are used in uPortal. The same technique of using
table cells and transparent gifs could not be used for the other three graphic elements.
The reason for this is due to the need for compatibilty with older web browsers, Netscape
4.7 in particular. NS 4.7 can have a maximum of 4 nested tables before behavior of the
browser becomes unpredictible. All of the tabs consist of just one table for each tab,
containing its name, nested within the main tab table. The channels are much more
complicated in their design, especially when the columns are added in preferenes mode,
and often include many more than 4 nested tables. The only way to create them and keep
compatibilty with NS 4.7, then, was to use the technique described below.

Channels: The channel design is made from a 7 row by 3 column table, as
shown below. Each of the corner and transition cells contains a single image, and is
filled completely by that image. These cells are set to 0% width. Each of the edge and
trim cells contains a single transparent gif and has a background image, one pixel in
height or width, that repeats in the x or y direction. These cells are set to 100% width to
ensure that they will be the only ones that expand with whatever content is added into
middle cell of the channel table.

 uPortal Channel: As Normally Viewed in Browser

 uPortal Channel: Stretched in 'X' Direction

 uPortal Channel: Table Border and Cell Padding On

Channel Image Colors

Below is a list of the images used for creating the channel interface. Each
graphic is detailed with the names of the CSS styles that match the colors used. When a
color is used by name and not by CSS style, it was chosen for its use in matching the
scheme as an appropriate highlight or shadowing color.

Corner Images – Full Sized Images

 topleftcorner.gif – CSS colors listed below

 toprightcorner.gif

 bottomleftcorner.gif

 bottomrightcorner.gif

Transition Images – Full Sized Images Between Edge Cells

 headerbottomleft.gif

 headerbottomright.gif

 channeltopleft.gif

 channeltopright.gif

Edge Images – Single Pixel Images

 Repeat 'X' Direction – One Pixel Wide

 topborder.gif

 bottomborder.gif

 Repeat 'Y' Direction – One Pixel High

 headerleftborder.gif

 headerrightborder.gif

 iconbarlinesleft.gif

 iconbarrightborder.gif

 channelleftborder.gif

 channelrightborder.gif

Trim Images – Single Pixel Wide Images, Repeat in 'X' Direction

 headerbottomborder.gif

 channeltopborder.gif

Other – Single Pixel High Image that Does NOT Repeat

 channellinesbottom.gif

This graphic has been added to “cap off” the icon bar lines, giving them a
sense of completion.

Content Cells – The three remaining table cells

 Channel Title Cell is filled with 'uportal-background-semidark'

 Icon Bar Cell is filled with 'uportal-background-light'

 Channel Content Cell is filled with 'uportal-background-content'

Columns: The columns are designed in exactly the same way as the
channels, using a 7x3 table to expand around the content in the middle cell. The only real
difference between the design of the channel and the column is the lack of a title cell in
the column. The space is still there for it, but it is left as a one pixel high, dark grey line
instead of filling it with text. As a more subtle difference in the column design, the
padding around the icon bar is built into the icon bar itself on the column, whereas it is
part of the graphics above and below the icon bar in the channel.

The graphics used for the columns are shown below. The names of the
images used for the column are the same as those in the channels, with a “G” (which
originally stood for “grey,” when all of the graphics were in one directory) tacked on the
end. Therefore, “bottomborder.gif” would be “bottomborderG.gif.” Later, the column
border and the channel border images were separated into different directories, but the
“G” remained as legacy.

 uPortal Column: As Normally Viewed in Browser

 uPortal Column: Table Border and Cell Padding On

Column Images

Corner Images – Full Sized Images

topleftcornerG.gif

toprightcornerG.gif

bottomrightcornerG.gif

bottomleftcornerG.gif

Transition Images – Full Sized Images Between Edge Cells
headerbottomleftG.gif
headerbottomrightG.gif
channeltopleftG.gif
channeltoprightG.gif

Edge Images – Single Pixel Images
Repeat 'X' Direction – One Pixel Wide
topborderG.gif
bottomborderG.gif

Repeat 'Y' Direction – One Pixel High
headerleftborderG.gif
headerrightborderG.gif
iconbarlinesleftG.gif
iconbarrightborderG.gif
channelleftborderG.gif
channelrightborderG.gif

Trim Images – Single Pixel Wide Images, Repeat in 'X' Direction
headerbottomborderG.gif
channeltopborderG.gif

Other – Single Pixel High Image that Does NOT Repeat
iconbarlinesbottomG.gif

Alert Box: Similar to the columns, the alert box is based on the same 7x3
table design that the channels use. The difference with this element is that a vertically
expanding line is used to separate any sets of content displayed in the box.

Icons: The icon graphics are fixed in size, though new ones can be made to
replace the default versions.

Header Icons

Prefernces Icons

Layout Fragments

An Introduction to Layout Fragments

A layout fragment is a block of uPortal content, including framework elements
such as tabs and columns or tree elements as well as channels. In the purest sense, a
fragment can be a single channel, or they can be more complicated, consisting of several
channels dispersed through out multiple columns and tabs. Fragments can be “pushed”
out to a user, in that an author such as a professor forces the fragment to appear on the
layout of each of their students, or they may be “pulled” by the user, in that a user
subscribes to a large block of content all at one time. Fragments are a very useful feature
for uPortal, though there are some very difficult problems to solve as development of
uPortal continues.

On the lowest level, the attachment point of a layout fragment becomes an issue.
As described above, the USER is the root element, with “Tab” folders listed below that.
How exactly does the fragment get added into the rest of the user’s layout? What if a
developer wants to have a fragment that is channels without columns or tabs? What if
they want to have one that involves multiple tabs? How do we represent a tab/column
fragment in a tree structure? There are several issues that disrupt how a fragment can
work in a uPortal layout. The solution at this time is to create a base level structure for a
fragment, known as the “foundation.” All fragments must start with this foundation. As
development of uPortal and fragments continues, more options for the layout fragment
foundation can be included. At the current level of uPortal development, this foundation
will need to be defined as a single “Tab.” This will give the portal a place that it
understands to attach the fragment.

On the content level, layout fragments will run into issues with permissions
of the channels that are included in the fragment and the users of that fragment. For a
pushed fragment, it is more probable that an author will know who will receive the
fragment. For example, a Biology professor who makes a fragment for a 301 class will
know who has enrolled in the class. However, schedule changes make it impossible to
ever be certain of this 100%. This issue is compounded for pulled fragments, as the
fragment author has very little information about who will be subscribing to a fragment.
What happens, then, in the inevitable condition when a layout fragment subscriber is
pushed or pulling content to which they do not have permission to include in their layout?
Once again, this is a case where continued uPortal and fragment development can change
how this will be handled. For the current release of uPortal, however, the fragment will
be displayed to the user, although any channels that conflict with a user due to
permissions will be empty.

Creating Fragments

As discussed in the introduction, fragments are a new addition to uPortal.
For this reason, much of the development for fragment management will continue
through the 2.2 release of uPortal. As this development continues, new options for
creating fragments will be added and they will be discussed in subsequent versions of this
document. At the time of this writing, however, the only method for creating a new
fragment is to build the necessary documents by hand.

A fragment is an XML document. A sample XML fragment and it resulting
XHTML rendering in uPortal is shown below, with an explaination of the tags following.

<?xml version="1.0" encoding="utf-8"?>
<fragments>
 <fragment name="pfragment1.0">
 <description>The push fragment example</description>
 <groups>
 <group>Students</group>
 <group>Developers</group>
 </groups>
 <restrictions>
 <restriction path="local" name="priority" value="0-20000"/>
 <restriction path="local" name="depth" value="1"/>
 <restriction path="parent" name="priority" value="1-10"/>
 </restrictions>
 <folder name="Sample Fragment" immutable="Y" unremovable="Y" hidden="N">
 <folder name="column1" immutable="Y" unremovable="Y" hidden="N">
 <channel fname="word-of-the-day" immutable="Y" unremovable="Y" hidden="N"/>
 <channel fname="salon.com" immutable="Y" unremovable="Y" hidden="N"/>
 </folder>
 <folder name="column2" immutable="Y" unremovable="Y" hidden="N">
 <channel fname="motley-fool" immutable="Y" unremovable="Y" hidden="N"/>
 </folder>
 </folder>
 </fragment>
 </fragments>

Explaination of XML Fragment Tags

<?xml version="1.0" encoding="utf-8"?>: Opening tag for all XML documents. It is
not an XML element, and does not require a closing tag.

<fragments>: Root tag for the fragment. One and only one “fragments” tag is required.

<fragment name="pfragment1.0">: Opening tag for this particular fragment,
including an attribute, “name,” that contains the name of the fragment.

<description>: Metadata about the fragment that will be shown by uPortal to a user
when they are subscribing to new content.

<groups>: Opening tag for the list of groups that have permissions to subscribe to this
fragment.

<group>: One “group” tag is needed for each group that has permission to subscribe to
this fragment.

<restrictions>: Opening tag for the list of restrictions that will be applied to the use of
this fragment.

<restriction path="local" name="priority" value="0-20000"/>: Each restriction
requires one tag, with its values defined in the attributes. These restrictions are:

Local Priority: defines any restriction that the fragment author decides to put on
the position of the fragment root in the layout. Can contain any numeric string range
from 0-20000.

Depth: defines any restrictions that the fragment author may place on where in
the user layout node tree the fragment can be attached. The USER node is depth level 1,
the first folder level is depth level 2, etc. Since the fragment foundation is currently
restricted to a Tab, which is attached to the ROOT, this must be set to a value of “1.”
The fragment author will be given the ability to set this restriction once the foundation is
more open. Can contain a single string number, the range of which is dependent on the
number of levels in the layout.

Parent Priority: defines any restriction that the fragment author decides to put on
the position of the parent to which the fragment will be attached or moved to. Can
contain a numeric string range from 0-20000.

<folder name="Sample Fragment" immutable="Y" unremovable="Y" hidden="N">:
The opening element for the actual content of the fragment. The attributes for this tag
define its:

name: the name of the fragment. Can carry any string value.
immutable: defines whether changes can be made to the fragment by the user.

Can carry the value of “Y” or “N.”
unremovable: defines whether the fragment can be deleted by the user. Can

carry the value of “Y” or “N.”
hidden: defines wheter the fragment appears in the rendered layout. Can carry

the value of “Y” or “N.”

<folder name="column1" immutable="Y" unremovable="Y" hidden="N">:
Opening tag for the framework elements. Uses the same attribue types as the “fragment”
tab, though the values can be different.

<channel fname="word-of-the-day" immutable="Y" unremovable="Y"
hidden="N"/>: Opening tag for a content channel. Also uses the same attribue types as
the “fragment” tab, and the values may also be different, except “fname” is used in the
place of “name.” Fname is a value used by the database to locate the requested channel.

Publishing Fragments

This is something that I do not fully understand, and need to have Michael
explain to me...as it must be done manually at this time.

Appendix A: Default uPortal Cascading Style Sheet

Appendix A: Default uPortal Cascading Style Sheet

Appendix A: Default uPortal Cascading Style Sheet - Text Format

BODY{
background: #666633;

}
A {

text-decoration : none;
color : Black;

}
A:VISITED {

color : Black;
}
A:HOVER {

color : #993333;
text-decoration: underline;

}
A.navigation {

color : #FFFFCC;
font-size : x-small;
font-weight : bold;
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;

}
A.navigation:visited {

color : #FFFFCC;
font-size : x-small;
font-weight : bold;
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;

}
A.navigation:hover {

color : #993333;
font-size : x-small;
font-weight : bold;
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
text-decoration: underline;

}
.navigation-selected{

font-size : x-small;
font-weight : bold;
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
color : #FFFFCC;

}
A.uportal-navigation-category{

color : Black;
font-size : x-small;
font-weight : bold;
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;

}

A.uportal-navigation-category:visited{
color : Black;
font-size : x-small;
font-weight : bold;
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;

}
A.uportal-navigation-category:hover{

color : #993333;
font-size : x-small;
font-weight : bold;
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
text-decoration: underline;

}
.uportal-navigation-category-selected{

font-size : x-small;
font-weight : bold;
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
color : #000000;

}
A.uportal-navigation-channel{

color : Black;
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : x-small;

}
A.uportal-navigation-channel:visited{

color : Black;
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : x-small;

}
A.uportal-navigation-channel:hover{

color : #993333;
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : x-small;
text-decoration: underline;

}
.uportal-navigation-channel-selected{

background : Black;
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : x-small;
color : White;

}
.uportal-text{

color : Black;
font-family : Georgia, "Times New Roman", Times, serif;
font-size : x-small;

}
.uportal-text-small{

color : Black;

font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : xx-small;

}
.uportal-button{

color : Black;
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : xx-small;
background : #CCCC99;

}
.uportal-label{

color : Black;
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : xx-small;
font-weight : bold;

}
.uportal-input-text{

color : Black;
font-size: x-small;
font-family: Monaco, Andale Mono, monospace;
background : #CCCC99;

}
.uportal-text-reversed{

color : White;
font-family : Georgia, "Times New Roman", Times, serif;
font-size : x-small;

}
.uportal-crumbtrail{

font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : xx-small;
color : #666666;

}
.uportal-copyright{

font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : xx-small;
color : Black;
font-style : italic;

}
.uportal-channel-text{

color : Black;
font-family : Georgia, "Times New Roman", Times, serif;
font-size : x-small;

}
.uportal-channel-title{

color : #FFFFCC;
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : xx-small;
font-weight : bold;

}

.uportal-channel-title-reversed{
color : #663333;
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : xx-small;
font-weight : bold;

}
.uportal-channel-subtitle{

color : #999999;
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : x-small;
font-weight : bold;

}
.uportal-channel-subtitle-reversed{

color : #333333;
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : xx-small;
font-weight : bold;

}
.uportal-channel-emphasis{

font-weight : bold;
font-size : x-small;
font-family : Georgia, "Times New Roman", Times, serif;

}
.uportal-channel-strong{

font-weight : bold;
font-size : x-small;
font-family : Georgia, "Times New Roman", Times, serif;

}
.uportal-channel-code{

color : Black;
font-size: x-small;
font-family: Monaco, Andale Mono, monospace;

}
.uportal-channel-copyright{

font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : xx-small;
color : Black;
font-style : italic;

}
.uportal-channel-warning{

font-size: xx-small;
font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
color : #993333;

}
.uportal-channel-error{

color : #993333;
font-size: xx-small;
font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;

}
.uportal-channel-table-caption{

color : #993333;
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : x-small;
font-weight : bold;
text-align: center;

}
.uportal-channel-table-header{

color : #993333;
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : x-small;
font-weight : bold;
text-align: left;

}
.uportal-channel-table-row-even{

color : Black;
font-size: xx-small;
font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;

}
.uportal-channel-table-row-odd{

color : #666666;
font-size: xx-small;
font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;

}
.uportal-background{

background : #000000;
}
.uportal-background-dark{

background : #666633;
}
.uportal-background-med{

background : #999966;
}
.uportal-background-light{

background : #CCCC99;
}
.uportal-background-content{

background : #FFFFCC;
}
.uportal-background-highlight{

background : #FFFF99;
}
.uportal-background-shadow{

background : #000000;
}
.uportal-background-page{

background : #FFFFFF;

}
.uportal-background-semidark{

background: #7F804D;
}
.uportal-background-selected{

background : #FF9933;
}
.uportal-background-neutral-dark{

background: #666666;
}
.uportal-background-neutral-light{

background: #CCCCCC;
}

