FEARS Access Control Specifications

Gongalo Dumiense
INESC-ID/IST
Software Engineering Group

Rua Alves Redol N° 9, 1000-029 Lisboa
dumiense@rnl.ist.utl.pt

Abstract.

1 Access Control Requisites and assumptions

1.1 Roles

It is assumed that there are the following instances of access control roles:

— RegisteredUser
— SuperUser
— FearsAdministrator

It is assumed that roles are hierarchical, i.e., a FearsAdministrator is a Regis-
teredUser, a SuperUser is a FearsAdministrator, and consequently, a Registere-
dUser.

1.2 Rules

The following rules should be enforced:

— Only registered users can vote, add features, and add comments.

— A registered user can remove votes, but only his own votes.

— Only Fears administrators can create and delete projects.

— Only a Super User can nominee a registered user as a Fears administrator,
or dispromote him.

— Seeing existing projects and features requests is public.

2 Specification in DM APL

2.1 Only registered users can vote, add features, and add comments

The following DMAPL code enforces the desired constraint:



// Only registered users can vote, add features and comments

RegisteredUserAccess
allow role RegisteredUser
to QRegisteredUser

The annotation @RegisteredUser should be created:

package eu.ist.fears.server.domain.annotations

@Retention (RUNTIME)
Q@Target ({METHOD, CONSTRUCTOR})
public @interface RegisteredUser {

The following methods should be annotated with @RegisteredUser

package eu.ist.fears.server.domain

class Project {

ORegisteredUser
public void addFeature(FeatureRequest s){

}
}

class FeatureRequest {

ORegisteredUser
public void vote(Voter voter) {

}

ORegisteredUser
public void addComment (String comment, Voter voter) {




2.2 A registered user can remove votes, but only his own votes

The following DMAPL code enforces the desired constraint:

// A registered user can remove votes, but only his own votes

RemoveVoteAccess
allow role RegisteredUser
to eu.ist.fears.server.domain.FeatureRequest.
removeVote (Voter voter)

where { voter.equals(user); }

2.3 Only Fears administrators can create and delete projects

The following DMAPL code enforces the desired constraint:

// Only Fears administrators can create projects

CreateProjectAccess
allow role FearsAdministrator
to eu.ist.fears.server.domain.FearsApp.addProject(Project p,
Voter voter)

// Only Fears administrator can delete projects
DeleteProjectAccess:
allow role FearsAdministrator
to eu.ist.fears.server.domain.FearsApp.
deleteProject(String name)

Alternativelly, one can create an annotation @FearsAdministratorTask, as
decribed in Section 2.1 and simply write the following rule:

// Only Fears administrators can do Fear Administration Tasks

FearAdministrationAccess
allow role FearsAdministrator
to QFearsAdministratorTask

The methods addProject (Project p, Voter voter) and deleteProject(String name)
of class FearsApp should be annotated with annotation @FearsAdministratorTask



2.4 Only a Super User can nominee a registered user as a Fears
administrator or dispromote him

The following DMAPL code enforces the desired constraint:

// Only a Super User can nominee a registered user as a
// Fears administrator

AddAdminAccess
allow role SuperUser
to eu.ist.fears.server.domain.addAdmin(Voter v)

//0nly a Super User can dispromote a FearsAdministrator
RemoveAdminAccess:

allow role SuperUser
to eu.ist.fears.server.domain.removeAdmin(Voter v)

As in Section 2.3 , one can use annotations to write just one simple rule:

SuperUserAccess:
allow role SuperUser
to @SuperUserTask

The annotations creation and method annotation is similar to what was
refered in Section 2.3.

A third method possible approach for this specific rule is to admit that Su-
perUser does not correspond to a role, but to a specific user. Let us consider
that, that specific user, is identified by the string root. Then the following code
expresses this modified constraint:

SuperUserAccess:
allow user root
to @SuperUserTask




