
FEARS Access Control Specifications

Gonçalo Dumiense

INESC-ID/IST
Software Engineering Group

Rua Alves Redol No 9, 1000-029 Lisboa
dumiense@rnl.ist.utl.pt

Abstract.

1 Access Control Requisites and assumptions

1.1 Roles

It is assumed that there are the following instances of access control roles:

– RegisteredUser
– SuperUser
– FearsAdministrator

It is assumed that roles are hierarchical, i.e., a FearsAdministrator is a Regis-
teredUser, a SuperUser is a FearsAdministrator, and consequently, a Registere-
dUser.

1.2 Rules

The following rules should be enforced:

– Only registered users can vote, add features, and add comments.
– A registered user can remove votes, but only his own votes.
– Only Fears administrators can create and delete projects.
– Only a Super User can nominee a registered user as a Fears administrator,

or dispromote him.
– Seeing existing projects and features requests is public.

2 Specification in DMAPL

2.1 Only registered users can vote, add features, and add comments

The following DMAPL code enforces the desired constraint:



// Only registered users can vote, add features and comments

RegisteredUserAccess :
allow role RegisteredUser
to @RegisteredUser

The annotation @RegisteredUser should be created:

package eu.ist.fears.server.domain.annotations

@Retention(RUNTIME)
@Target({METHOD, CONSTRUCTOR})
public @interface RegisteredUser {

...

}

The following methods should be annotated with @RegisteredUser

package eu.ist.fears.server.domain

class Project {

...

@RegisteredUser
public void addFeature(FeatureRequest s){
...

}

}

class FeatureRequest {

...

@RegisteredUser
public void vote(Voter voter) {
...

}

@RegisteredUser
public void addComment(String comment, Voter voter) {



...
}

}

2.2 A registered user can remove votes, but only his own votes

The following DMAPL code enforces the desired constraint:

// A registered user can remove votes, but only his own votes

RemoveVoteAccess :
allow role RegisteredUser
to eu.ist.fears.server.domain.FeatureRequest.

removeVote(Voter voter)
where { voter.equals(user); }

2.3 Only Fears administrators can create and delete projects

The following DMAPL code enforces the desired constraint:

// Only Fears administrators can create projects

CreateProjectAccess :
allow role FearsAdministrator
to eu.ist.fears.server.domain.FearsApp.addProject(Project p,

Voter voter)

// Only Fears administrator can delete projects
DeleteProjectAccess:

allow role FearsAdministrator
to eu.ist.fears.server.domain.FearsApp.

deleteProject(String name)

Alternativelly, one can create an annotation @FearsAdministratorTask, as
decribed in Section 2.1 and simply write the following rule:

// Only Fears administrators can do Fear Administration Tasks

FearAdministrationAccess :
allow role FearsAdministrator
to @FearsAdministratorTask

The methods addProject(Project p, Voter voter) and deleteProject(String name)
of class FearsApp should be annotated with annotation @FearsAdministratorTask



2.4 Only a Super User can nominee a registered user as a Fears
administrator or dispromote him

The following DMAPL code enforces the desired constraint:

// Only a Super User can nominee a registered user as a
// Fears administrator

AddAdminAccess :
allow role SuperUser
to eu.ist.fears.server.domain.addAdmin(Voter v)

//Only a Super User can dispromote a FearsAdministrator

RemoveAdminAccess:
allow role SuperUser
to eu.ist.fears.server.domain.removeAdmin(Voter v)

As in Section 2.3 , one can use annotations to write just one simple rule:

SuperUserAccess:
allow role SuperUser
to @SuperUserTask

The annotations creation and method annotation is similar to what was
refered in Section 2.3.

A third method possible approach for this specific rule is to admit that Su-
perUser does not correspond to a role, but to a specific user. Let us consider
that, that specific user, is identified by the string root. Then the following code
expresses this modified constraint:

SuperUserAccess:
allow user root
to @SuperUserTask


